Use geom_rect() to add recession bars to your time series plots #rstats #ggplot

Zach Mayer’s work reproducing John Hussman’s Recession Warning Composite prompted me to dig this trick out of my (Evernote) notebook.

First, let’s grab some data to plot using the very handy getSymbols() function from Jeffrey Ryan’s quantmod package. We’ll load the U.S. unemployment rate (UNRATE) from the St. Loius Fed’s Federal Reserve Economic Data (src="FRED") and load the time series into a data.frame:

unrate = getSymbols('UNRATE',src='FRED', auto.assign=F) 
unrate.df = data.frame(date=time(unrate), coredata(unrate) )

Now FRED provides a USREC time series which we could use to draw the recessions. It’s a bit awkward, though, as it contains a boolean to flag recession months since January 1921. All we really want are the start and end dates of each recession. Fortunately, the St. Louis Fed publishes just such a table on their web site. (See the answer to “What dates are used for the US recession bars in FRED graphs?” on http://research.stlouisfed.org/fred2/help-faq/.) Sometimes it’s still easier to cut-and-paste (and the static table covers another 64 years, go figure):

recessions.df = read.table(textConnection(
"Peak, Trough
1857-06-01, 1858-12-01
1860-10-01, 1861-06-01
1865-04-01, 1867-12-01
1869-06-01, 1870-12-01
1873-10-01, 1879-03-01
1882-03-01, 1885-05-01
1887-03-01, 1888-04-01
1890-07-01, 1891-05-01
1893-01-01, 1894-06-01
1895-12-01, 1897-06-01
1899-06-01, 1900-12-01
1902-09-01, 1904-08-01
1907-05-01, 1908-06-01
1910-01-01, 1912-01-01
1913-01-01, 1914-12-01
1918-08-01, 1919-03-01
1920-01-01, 1921-07-01
1923-05-01, 1924-07-01
1926-10-01, 1927-11-01
1929-08-01, 1933-03-01
1937-05-01, 1938-06-01
1945-02-01, 1945-10-01
1948-11-01, 1949-10-01
1953-07-01, 1954-05-01
1957-08-01, 1958-04-01
1960-04-01, 1961-02-01
1969-12-01, 1970-11-01
1973-11-01, 1975-03-01
1980-01-01, 1980-07-01
1981-07-01, 1982-11-01
1990-07-01, 1991-03-01
2001-03-01, 2001-11-01
2007-12-01, 2009-06-01"), sep=',',
colClasses=c('Date', 'Date'), header=TRUE)

Now the only “gotcha” is that our recession data start long before our unemployment data, so let’s trim it to match:

recessions.trim = subset(recessions.df, Peak >= min(unrate.df$date) )

Finally, we use ggplot2’s geom_line() layer to draw the unemployment data and transparent (alpha=0.2) pink rectangles to overlay the recessions:

g = ggplot(unrate.df) + geom_line(aes(x=date, y=UNRATE)) + theme_bw()
g = g + geom_rect(data=recessions.trim, aes(xmin=Peak, xmax=Trough, ymin=-Inf, ymax=+Inf), fill='pink', alpha=0.2)

About these ads

6 Responses to “Use geom_rect() to add recession bars to your time series plots #rstats #ggplot”

  1. wasenne (@wasenne) Says:

    great to know ggplot2 way, I did something similar using the old plain plot

  2. Use geom_rect() to add recession bars to your time series plots #rstats #ggplot | R | Scoop.it Says:

    […] Use geom_rect() to add recession bars to your time series plots #rstatsĀ #ggplot Zach Mayer’s work reproducing John Hussman’s Recession Warning Composite prompted me to dig this trick out of my (Evernote) notebook. First, let’s grab some data to plot using the very handy get… Source: jeffreybreen.wordpress.com […]

  3. links for 2011-08-17 « Personal Link Sampler Says:

    […] Use geom_rect() to add recession bars to your time series plots #rstats #ggplot Ā« Things I tend to … (tags: stats:time-series stats:visualization) […]

  4. David Says:

    Neat! I guess this is pretty similar intuitively to the Excel approach, but it’s great to be able to explicitly specify dimensions instead of using hacks with bar charts. Thanks for sharing.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

Join 63 other followers

%d bloggers like this: